Showing posts with label Physical Chemistry. Show all posts
Showing posts with label Physical Chemistry. Show all posts

Tuesday, 24 June 2014

Molecular footballs could revolutionize your next World Cup experience

A new way to assemble individual molecules could revolutionize the creation of novel materials with numerous potential applications, including emerging technologies such as flexible TVs. The results of this ground-breaking research are published on 22 June in the prestigious journal Nature Chemistry.

Saturday, 7 June 2014

Evolution of a bimetallic nanocatalyst

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multi-national lab collaboration led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases. 
 
TEM image of platinum/cobalt bimetallic nanoparticle catalyst in action shows that during the oxidation reaction, cobalt atoms migrate to the surface of the particle, forming a cobalt oxide epitaxial film, like water on oil.

Thursday, 1 May 2014

New fluorescent hybrid material changes color according to direction of light

The UPV/EHU's Molecular Spectroscopy Group, in collaboration with the Institute of Catalysis and Petroleum Chemistry of the CSIC (Spanish National Research Council), has developed a highly fluorescent hybrid material that changes colour depending on the polarisation of the light that it is illuminated by. 

The research has been published in ACS Photonics, the new journal devoted exclusively to Photonics published by the American Chemical Society.

The aim with respect to hybrid materials with one organic component and another inorganic one is to combine the best attributes of each one into a single system. 

Labs across the world are working to develop new hybrid materials for technological applications in nanotechnologies, in particular, and these materials are already being used in lightweight materials for cars, sports equipment, in biomimetic materials, like prostheses, etc.


Left: CIE system or chromaticity diagram to characterise the colours.
Above right: green emission obtained using linearly polarised light along the channels. Below right: blue emission obtained using light linearly perpendicular to the channels. NB: the arrows indicate the direction in the polarisation of the light used.

Tuesday, 8 April 2014

Fighting cancer with lasers and nanoballoons that pop

Chemotherapeutic drugs excel at fighting cancer, but they’re not so efficient at getting where they need to go.

They often interact with blood, bone marrow and other healthy bodily systems. This dilutes the drugs and causes unwanted side effects.

Now, researchers are developing a better delivery method by encapsulating the drugs in nanoballoons – which are tiny modified liposomes that, upon being struck by a red laser, pop open and deliver concentrated doses of medicine.


Read more here...

The image shows a nanoballoon before (left) and after (right) being hit by a red laser. The laser causes the balloon to pop open and release the anti-cancer drugs directly at a tumor. Credit: Jonathan Lovell

Friday, 4 April 2014

Energy Breakthrough Uses Sun to Create Solar Energy Materials

In a recent advance in solar energy, researchers have discovered a way to tap the sun not only as a source of power, but also to directly produce the solar energy materials that make this possible.
 
This breakthrough by chemical engineers at Oregon State University could soon reduce the cost of solar energy, speed production processes, use environmentally benign materials, and make the sun almost a “one-stop shop” that produces both the materials for solar devices and the eternal energy to power them.



Monday, 31 March 2014

Revolutionary Solar Cells Double as Lasers

Revolutionary solar cells double as lasers


Commercial silicon-based solar cells - such as those seen on the roofs of houses across the country - operate at about 20% efficiency for converting the Sun’s rays into electrical energy. It’s taken over 20 years to achieve that rate of efficiency.

A relatively new type of solar cell based on a perovskite material - named for scientist Lev Perovski, who first discovered materials with this structure in the Ural Mountains in the 19th century - was recently pioneered by an Oxford research team led by Professor Henry Snaith. 



Robotic Arm Probes Chemistry of 3-D Objects by Mass Spectrometry

Robotic Arm Probes Chemistry of 3-D Objects by Mass Spectrometry



When life on Earth was first getting started, simple molecules bonded together into the precursors of modern genetic material. 

A catalyst would have been needed, but enzymes had not yet evolved. 

One theory is that the catalytic minerals on a meteorite’s surface could have jump-started life’s first chemical reactions. 

But scientists need a way to directly analyze these rough, irregularly shaped surfaces. 

A new robotic system at Georgia Tech’s Center for Chemical Evolution could soon let scientists better simulate and analyze the chemical reactions of early Earth on the surface of real rocks to further test this theory.


Nanotube Coating Helps Shrink Mass Spectrometers

Nanotube coating helps shrink mass spectrometers


Nanotechnology is advancing tools likened to Star Trek's "tricorder" that perform on-the-spot chemical analysis for a range of applications including medical testing, explosives detection and food safety.
Researchers found that when paper used to collect a sample was coated with carbon nanotubes, the voltage required was 1,000 times reduced, the signal was sharpened and the equipment was able to capture far more delicate molecules.

A carbon nanotube-coated paper triangle placed on an ionization source charged by a small battery is held in front of a mass spectrometer. Researchers at Purdue University and the Indian Institute of Technology Madras studied the use of carbon nanotubes to advance ambient ionization techniques. (Purdue University photo/Courtesy of Thalappil Pradeep)

Saturday, 22 March 2014

New Technique Makes LEDs Brighter, More Resilient

New Technique Makes LEDs Brighter, More Resilient

 “By coating polar GaN with a self-assembling layer of phosphonic groups, we were able to increase luminescence without increasing energy input,” says Stewart Wilkins, a Ph.D. student at NC State and lead author of a paper describing the work. “The phosphonic groups also improve stability, making the GaN less likely to degrade in solution.

Wednesday, 19 March 2014

Toward ‘Vanishing’ Electronics and Unlocking Nanomaterials’ Power Potential

Brain sensors and electronic tags that dissolve. Boosting the potential of renewable energy sources. These are examples of the latest research from two pioneering scientists selected as this year’s Kavli lecturers at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society.


Biodegradable materials from Rogers’ lab could one day transform electronics for consumer and medical devices, as illustrated here in a dissolvable RFID tag prototype.
Credit: John Rogers

Saturday, 1 March 2014

A sharp Eye for Molecular Fingerprints

MPQ-scientists record broad absorption spectra on a microsecond scale with two laser frequency combs.

A team of scientists around Dr. Nathalie Picqué and Prof. Theodor W. Hänsch at the Laser Spectroscopy Division of the Max Planck Institute of Quantum Optics (Garching), in a collaboration with the Ludwig-Maximilians-Universität Munich and the Institut des Sciences Moléculaires d’Orsay (France) now reports on a new method of real-time identification and quantification of molecular species (Nature Communications 5, 3375 – Feb. 27, 2014).


Portion of a dual-comb real-time absorption spectrum of acetylene in the near-infrared region. While the spectrum without the adaptive sampling (blind sampling) is strongly distorted, the adaptive spectrum accurately reveals the molecular profiles. (Graphic: MPQ, Laser Spectroscopy Division)

A Molecular Ballet under the X-ray Laser

An international team of researchers has used the world’s most powerful X-ray laser to take snapshots of free molecules. 

The research team headed by Prof. Jochen Küpper of the Hamburg Center for Free-Electron Laser Science (CFEL) choreographed a kind of molecular ballet in the X-ray beam. 

With this work, the researchers have cleared important hurdles on the way to X-ray images of individual molecules, as they explain in the scientific journal Physical Review Letters. 

CFEL is a cooperation of DESY, the University of Hamburg, and the Max Planck Society.

Read more here...

The molecules (green stream) enter the test chamber with random orientation and are forced to all take up the same pose by an optical laser (red). A bright X-ray flash (blue) produces a diffraction image (upper right) that contains structural information about the molecule. Credit: Stephan Stern/CFEL
 

Saturday, 22 February 2014

Microparticles Show Molecules Their Way

A team of researchers of Karlsruhe Institute of Technology (KIT) and the University of Michigan/USA has produced novel microparticles, whose surface consists of three chemically different segments. 

These segments can be provided with different (bio-) molecules. 

Thanks to the specific spatial orientation of the attached molecules, the microparticles are suited for innovative applications in medicine, biochemistry, and engineering. 

The researchers now report about their development in the journal “Angewandte Chemie“.


The small, but highly complex particles contain chemically different segments. (Photo: Angewandte Chemie)

Thursday, 20 February 2014

ORNL microscopy system delivers real-time view of battery electrochemistry | ornl.gov


Using a new microscopy method, researchers at the Department of Energy’s Oak Ridge National Laboratory can image and measure electrochemical processes in batteries in real time and at nanoscale resolution.

Scientists at ORNL used a miniature electrochemical liquid cell that is placed in a transmission electron microscope to study an enigmatic phenomenon in lithium-ion batteries called the solid electrolyte interphase, or SEI, as described in a study published in Chemical Communications.

Read more at ORNL Microscopy System Delivers Real-time View of Battery Electrochemistry | ornl.gov

A new in situ transmission electron microscopy technique enabled ORNL researchers to image the snowflake-like growth of the solid electrolyte interphase from a working battery electrode.
 

Leeds Researchers Build World’s Most Powerful Terahertz Laser Chip

University of Leeds researchers have taken the lead in the race to build the world’s most powerful terahertz laser chip. 
 
A paper in the Institution of Engineering and Technology’s (IET) journal Electronics Letters reports that the Leeds team has exceeded a 1 Watt output power from a quantum cascade terahertz laser.


Credit: University of Leeds

Tuesday, 18 February 2014

Synthesised Sponge Chemical Shows Promise for Cancer

A promising compound for cancer treatment has been synthesised in a laboratory by an RMIT University researcher during his PhD research.

Dr Dan Balan, from the School of Applied Sciences at RMIT, said 15-aza-Salicylihalamide A analogue had demonstrated potent activity against several leukaemia cell lines.

"Salicylihalamide A is an interesting natural marine product that has been isolated from a marine sponge of the genus Haliclona, collected from waters around Rottnest Island, 18 km off the coast of southern Western Australia," Dr Balan said.



Putting the Power in Power-Dressing

Scientists in the UK developing wearable electronics have knitted a flexible fabric that delivers twice the power output of current energy harvesting textiles.

There is considerable interest and research into wearable piezoelectric energy harvesters that use waste energy from human movement or the ambient environment to power low-energy consuming wearable devices, such as wireless sensors and consumer electronics.
 
The fabric is composed of two separate conducting, silver-coated polyamide textile faces joined together by a PVDF spacer yarn. Credit: Navneet Soin et al.

Sunday, 16 February 2014

Graphene’s Love Affair with Water

Graphene has proven itself as a wonder material with a vast range of unique properties. Among the least-known marvels of graphene is its strange love affair with water.

Graphene is hydrophobic – it repels water – but narrow capillaries made from graphene vigorously suck in water allowing its rapid permeation, if the water layer is only one atom thick – that is, as thin as graphene itself.

This bizarre property has attracted intense academic and industrial interest with intent to develop new water filtration and desalination technologies.


Credit: Dr Rahul Nair and Prof Andre Geim, The University of Manchester

Superconductivity in Orbit: Scientists Find New Path to Loss-Free Electricity

Armed with just the right atomic arrangements, superconductors allow electricity to flow without loss and radically enhance energy generation, delivery, and storage. 

Scientists tweak these superconductor recipes by swapping out elements or manipulating the valence electrons in an atom's outermost orbital shell to strike the perfect conductive balance. 

Most high-temperature superconductors contain atoms with only one orbital impacting performance—but what about mixing those elements with more complex configurations?

Now, researchers at the U.S. Department of Energy's Brookhaven National Laboratory have combined atoms with multiple orbitals and precisely pinned down their electron distributions. 


These images show the distribution of the valence electrons in the samples explored by the Brookhaven Lab collaboration—both feature a central iron layer sandwiched between arsenic atoms. The tiny red clouds (more electrons) in the undoped sample on the left (BaFe2As2) reveal the weak charge quadrupole of the iron atom, while the blue clouds (fewer electrons) around the outer arsenic ions show weak polarization. The superconducting sample on the right (doped with cobalt atoms), however, exhibits a strong quadrupole in the center and the pronounced polarization of the arsenic atoms, as evidenced by the large, red balloons. Credit: Brookhaven Lab scientists and study coauthors Lijun Wu, Yimei Zhu, Chris Homes, and Weiguo Yin

Saturday, 15 February 2014

Diamond Film Possible Without the Pressure

Perfect sheets of diamond a few atoms thick appear to be possible even without the big squeeze that makes natural gems.

Scientists have speculated about it and a few labs have even seen signs of what they call diamane, an extremely thin film of diamond that has all of diamond’s superior semiconducting and thermal properties.

Now researchers at Rice University and in Russia have calculated a “phase diagram” for the creation of diamane. The diagram is a road map. It lays out the conditions – temperature, pressure and other factors – that would be necessary to turn stacked sheets of graphene into a flawless diamond lattice.

The phase diagram developed by scientists at Rice University and in Moscow describes the conditions necessary for the chemical creation of thin films of diamond from stacks of single-atomic-layer graphene. (Credit: Pavel Sorokin/Technological Institute for Superhard and Novel Carbon Materials)

Message from Bhagavath Geetha
  • Do not get over excited over happiness and do not get over depressed over sorrow.
  • Do not get over bonded with anyone and anybody because it can lead to problems and sorrow.
  • Never think that my duty is the topmost or lowermost. Every duty is respectful. The responsibility undertaken or given as per the position is the noblest duty.
  • Elevate yourselves, family, society and nation and never denigrate yourselves, family, society and nation.
  • We are our own closest relatives and if not properly utilised we will become our closest enemies.
  • There are possibilities of success and failure in any endeavour. One cannot assure success always.
  • Death is inevitable for everyone in this world. In any endeavour at the maximum an individual may die.
  • People may say good and also they may say bad. Approach them with stabilised mind.
  • Take anything after scientifically, logically and rationally analysing them.
  • Perform your duty, responsibility and accept the privileges eligible for you.
  • First change ourselves and then try to change others.
  • We are all instruments /tools in the hands of the nature for performing the duty. So do not think that I am doing the duty. Think that I am an instrument to do the duty.
  • Results of action may not be sweet always. Accept what ever may be the result.
  • Follow the path of great scholars who guided the world. Listen their messages.
  • Results and rewards will come and go but stick to your duty with devotion, dedication and sincerity.