Small difference, large effect: Most biological molecules occur in two variants, an original and its mirror image. As a result, they are related to one another like the left hand to the right. For instance, the left- and right-handed variant of the same molecule makes lemons smell different from oranges. This so-called chirality also plays an important role in pharmaceutical research.
Working in close collaboration, physicists from the Max Planck Institute for Nuclear Physics and chemists from Heidelberg University have now developed a method which, so to speak, takes a snapshot of chiral molecules and so reveals their spatial atomic structure. The molecule's handedness, or chirality, can be directly derived from this information.
Read more here...
Molecular mirror images of, so-called enantiomeres, of dideuterooxirane (grey: hydrogen, green: deuterium, blue: carbon, red: oxygen). (Credit: Rupprecht-Karls-University Heidelberg/O.Trapp) |
Credit: Dr. Holger Kreckel, Max Planck Institute for Nuclear Physics, Heidelberg